44 research outputs found

    Finite element modelling of an energy–storing prosthetic foot during the stance phase of transtibial amputee gait

    Get PDF
    Energy-storing prosthetic feet are designed to store energy during mid-stance motion and to recover it during latestance motion. Gait analysis is the most commonly used method to characterize prosthetic foot behaviour during walking. In using this method, however, the foot is generally modelled as a rigid body. Therefore, it does not take into account the ability of the foot to deform. However, the way this deformation occurs is a key parameter of various foot properties under gait conditions. The purpose of this study is to combine finite element modelling and gait analysis in order to calculate the strain, stress and energy stored in the foot along the stance phase for self-selected and fast walking speeds. A finite element model, validated using mechanical testing, is used with boundary conditions collected experimentally from the gait analysis of a single transtibial amputee. The stress, strain and energy stored in the foot are assessed throughout the stance phase for two walking speed conditions: a self-selected walking speed (SSWS), and a fast walking speed (FWS). The first maximum in the strain energy occurs during heel loading and reaches 3 J for SSWS and 7 J for FWS at the end of the first double support phase. The second maximum appears at the end of the single support phase, reaching 15 J for SSWS and 18 J for FWS. Finite element modelling combined with gait analysis allows the calculation of parameters that are not obtainable using gait analysis alone. This modelling can be used in the process of prosthetic feet design to assess the behaviour of a prosthetic foot under specific gait conditions

    Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions: Effect of walking velocity

    Get PDF
    The greater metabolic demand during the gait of people with a transfemoral amputation limits their autonomy and walking velocity. Major modifications of the kinematic and kinetic patterns of transfemoral amputee gait quantified using gait analysis may explain their greater energy cost. Donelan et al. proposed a method called the individual limb method to explore the relationships between the gait biomechanics and metabolic cost. In the present study, we applied this method to quantify mechanical work performed by the affected and intact limbs of transfemoral amputees. We compared a cohort of six active unilateral transfemoral amputees to a control group of six asymptomatic subjects. Compared to the control group, we found that there was significantly less mechanical work produced by the affected leg and significantly more work performed by the unaffected leg during the step-to-step transition. We also found that this mechanical work increased with walking velocity; the increase was less pronounced for the affected leg and substantial for the unaffected leg. Finally, we observed that the lesser work produced by the affected leg was linked to the increase in the hip flexion moment during the late stance phase, which is necessary for initiating knee flexion in the affected leg. It is possible to quantify the mechanical work performed during gait by people with a transfemoral amputation, using the individual limb method and conventional gait laboratory equipment. The method provides information that is useful for prosthetic fitting and rehabilitation

    The third dimension of scoliosis: The forgotten axial plane

    Get PDF
    Idiopathic scoliosis is a three-dimensional (3D) deformity of the spine. In clinical practice, however, the diagnosis and treatment of scoliosis consider only two dimensions (2D) as they rely solely on postero-anterior (PA) and lateral radiographs. Thus, the projections of the deformity are evaluated in only the coronal and sagittal planes, whereas those in the axial plane are disregarded, precluding an accurate assessment of the 3D deformity. A universal dogma in engineering is that designing a 3D object requires drawing projections of the object in all three planes. Similarly, when dealing with a 3D deformity, knowledge of the abnormalities in all three planes is crucial, as each plane is as important as the other two planes. This article reviews the chronological development of axial plane imaging and spinal deformity measurement

    A method for the field assessment of rolling resistance properties of manual wheelchairs, Computer Methods in Biomechanics and Biomedical Engineering

    Get PDF
    This article presents an examination and validation of a method to measure the field deceleration of a manual wheelchair (MWC) and to calculate the rolling resistances properties of the front and rear wheels. This method was based on the measurements of the MWC deceleration for various load settings from a 3D accelerometer. A mechanical model of MWC deceleration was developed which allowed computing the rolling resistance factors of front and rear wheels on a tested surface. Four deceleration sets were conducted on two paths on the same ground to test the repeatability. Two other deceleration sets were conducted using different load settings to compute the rolling resistance parameters (RPs). The theoretical decelerations of three load settings were computed and compared with the measured decelerations. The results showed good repeatability (variations of measures represented 6–11% of the nominal values) and no statistical difference between the path results. The rolling RPs were computed and their confidence intervals were assessed. For the last three sets, no significant difference was found between the theoretical and measured decelerations. This method can determine the specific rolling resistance properties of the wheels of a MWC, and be employed to establish a catalogue of the rolling resistance properties of wheels on various surfaces.The authors would like to thank the French National Research Agency (ANR) for its financial support to the SACR-FRM project (ANR-06-TecSan-020) and to the CERAH for the loan of all the manual wheelchairs evaluated in this work

    Assessment of field rolling resistance of manual wheelchairs

    Get PDF
    This article proposes a simple and convenient method for assessing the subject-specific rolling resistance acting on a manual wheelchair, which could be used during the provision of clinical service. This method, based on a simple mathematical equation, is sensitive to both the total mass and its fore-aft distribution, which changes with the subject, wheelchair properties, and adjustments. The rolling resistance properties of three types of front casters and four types of rear wheels were determined for two indoor surfaces commonly encountered by wheelchair users (a hard smooth surface and carpet) from measurements of a three-dimensional accelerometer during field deceleration tests performed with artificial load. The average results provided by these experiments were then used as input data to assess the rolling resistance from the mathematical equation with an acceptable accuracy on hard smooth and carpet surfaces (standard errors of the estimates were 4.4 and 3.9 N, respectively). Thus, this method can be confidently used by clinicians to help users make trade-offs between front and rear wheel types and sizes when choosing and adjusting their manual wheelchair.This material was based on work supported by the SACR-FRM project, French National Research Agency (ANR-06-TecSan-020) and the Centre d’Etudeset de Recherche sur l’Appareillage des Handicapés (loaned all MWCs required to fulfill this work

    Influence of physical capacities of males with transtibial amputation on gait adjustments on sloped surfaces

    Get PDF
    The aim of the study was to investigate how kinematic and kinetic adjustments between level and slope locomotion of persons with transtibial amputation are related to their individual muscular and functional capacities. A quantified gait analysis was conducted on flat and slope surfaces for seven patients with transtibial amputation and a control group of eight subjects to obtain biomechanical parameters. In addition, maximal isometric muscular strength (knee and hip extensors) and functional scores were measured. The results of this study showed that most of the persons with transtibial amputation could adapt to ramp ascent either by increasing ankle, knee, and hip flexion angles of the residual limb and/or by recruiting their hip extensors to guarantee enough hip extension power during early stance. Besides, 6-minute walk test score was shown to be a good predictor of adaptation capacities to slope ascent. In ramp descent, the increase of knee flexion moment was correlated with knee extensor strength and residual-limb length. However, no correlation was observed with functional parameters. Results show that the walking strategy adopted by persons with transtibial amputation to negotiate ramp locomotion mainly depends on their muscular capacities. Therefore, muscular strengthening should be a priority during rehabilitation.This material was based on work supported by the French National Research Agency (grant ANR-2010-TECS-020)

    A method for the field assessment of rolling resistance properties of manual wheelchairs, Computer Methods in Biomechanics and Biomedical Engineering

    Get PDF
    This article presents an examination and validation of a method to measure the field deceleration of a manual wheelchair (MWC) and to calculate the rolling resistances properties of the front and rear wheels. This method was based on the measurements of the MWC deceleration for various load settings from a 3D accelerometer. A mechanical model of MWC deceleration was developed which allowed computing the rolling resistance factors of front and rear wheels on a tested surface. Four deceleration sets were conducted on two paths on the same ground to test the repeatability. Two other deceleration sets were conducted using different load settings to compute the rolling resistance parameters (RPs). The theoretical decelerations of three load settings were computed and compared with the measured decelerations. The results showed good repeatability (variations of measures represented 6–11% of the nominal values) and no statistical difference between the path results. The rolling RPs were computed and their confidence intervals were assessed. For the last three sets, no significant difference was found between the theoretical and measured decelerations. This method can determine the specific rolling resistance properties of the wheels of a MWC, and be employed to establish a catalogue of the rolling resistance properties of wheels on various surfaces.The authors would like to thank the French National Research Agency (ANR) for its financial support to the SACR-FRM project (ANR-06-TecSan-020) and to the CERAH for the loan of all the manual wheelchairs evaluated in this work

    Foot-flat Period Estimation During Daily Living Situations of Asymptomatic and Lower Limb Amputee Subjects

    Get PDF
    Walking in various situations is a challenging task for people with a lower limb amputation. Walking upslope and downslope requires a larger ankle range of motion than waking on a level ground. Most of prosthetic feet do not include an ankle joint. The ankle mobility is obtained via the deformation of a composite structure or via rub- bers. The range of motion of the “ankle-foot” component is directly linked to the stiffness of the structure and to the load applied on the prosthesis. In ramps, prosthetic “ankle-feet” present a lack of dorsiflexion when going up and a lack of plantar flexion when going down (Williams et al. 2009). A decreased “ankle-foot” range of motion results in a reduced foot-flat period (FFP) which can induce insta- bility. New systems were proposed to allow ankle-foot prostheses to adapt to slopes (Sup et al. 2009; Williams et al. 2009; Fradet et al. 2010). Foot flat evaluation during different situations within the asymptomatic population could help to define a tar- get for prosthetic design. This parameter could also be a very interesting tool for orthoprosthesist to give a feed- back of the fitting of the prosthesis to the patient (Agrawal et al. 2009). A good adaptation of the prosthetic foot to the ground should result in a longer FFP and traduce the security of the subject on its prosthesis during stance phase. In the same way, a correct toe clearance during the swing phase will correspond to a contralateral side FFP close to normal. Actually, amputee people often demon- strate vaulting during swing phase showing their fear to stumble and fall. The evaluation of this parameter is all the more interesting for comparison purpose as it is not well taken into account during nowadays prosthesis design (Williams et al. 2009). Besides, FFP can be determined from on board measurements (Mariani et al. 2013) in real life conditions. However, for the moment, there are no reference data of FFP available in the literature.his work was supported by the French National Research Agency [grant number ANR-292 2010-TECS-020]

    Is bearing resistance negligible during wheelchair locomotion? Design and validation of a testing device

    Get PDF
    Purpose: Among the different resistances occurring during wheelchair locomotion and that limit the user autonomy, bearing resistance is generally neglected, based on a few studies carried out in static conditions and by manufacturer’s assertion. Therefore, no special attention is generally paid to the mounting and the maintenance of manual wheelchair bearings. However, the effect of inadequate mounting or maintenance on wheelchair bearing resistance has still to be clarified. This study aimed at filling this gap by developing and validating a specific device allowing the measurement of wheelchair bearing friction, characterized by low speed velocities, with an accuracy lower than 0.003 Nm. Methods: The bearing resistance measured by the device was compared to free deceleration measurement, intra and inter operator reproducibility were assessed. A factorial experiment allowed the effects of various functioning parameters (axial and radial loads, velocity) to be classified. Results: The device allowed significant differences in the bearing resistance of static and rotating conditions to be measured, even if a relatively high proportionality was found between both conditions. The factorial experiment allowed the expected impact of the radial load on bearing resistance as well as the predominant effect of the axial load to be demonstrated. Conclusions: As a consequence, it appeared that the control of the axial load is compulsory for measurement purposes or during wheel mounting, to avoid significant increase of global resistance during wheelchair locomotion. The findings of this study could help enhancing the models which assess manual wheelchair mechanical power from its settings and use conditions

    Estimation of the walking speed of individuals with transfemoral amputation from a single prosthetic shank-mounted IMU

    Get PDF
    Microprocessor prosthetic knees, able to restore the gait of people with transfemoral amputation, are now often equipped with sensors embedded in the prosthetic shank, which could be used to assess some gait characteristics during real-life activities. In particular, an estimation of the walking speed during the locomotion of those subjects would be a relevant indicator of the performance. However, if methods have already been proposed in the literature to compute this walking speed, none are directly usable in this context and with this population. For these reasons, the current study proposed to estimate the instantaneous walking speed with a shank-embedded Inertial Measurement Units based on a biomechanical model of the prosthetic lower limb. Averaged walking speed estimation has been quantified for nine individuals with transfemoral amputation walking on a treadmill at different speeds and slopes when wearing an instrumented knee ankle prosthesis. Experimental results demonstrated the ability of the model to estimate the walking speed with an accuracy of 9% (normalized root mean squared errors over all the patients), which is consistent with previous reported walking speed estimation errors. In addition, as the walking speed estimation is instantaneous, the proposed method can provide the estimation by the end of the stance phase, which is an originality compared to other methods based on step length estimation. The present method is relevant for the estimation of walking speed during real-life activities of above-knee amputees opening the way to direct activity monitoring from the prosthesis.The author(s) disclosed receipt of the following finan- cial support for the research, authorship, and/or publication of this article: The corresponding author Boris Dauriac was funded by a CIFRE grant from the Proteor company, subsidized by the French National Association for Research and Technology (ANRT,CIFRE grant 2014/1047). The other authors received no financial support for the research, authorship, and/ or publication of this article
    corecore